Perform the COunt of OBServations (coobs) algorithm using existing site data and raster metrics. This algorithm aids the user in determining where additional samples could be located by comparing existing samples to each pixel and associated covariates. The output coobs raster could be used to constrain clhs sampling to areas that are underreprented.
Usage
calculate_coobs(
mraster,
existing,
cores = 1,
threshold = 0.95,
plot = FALSE,
filename = NULL,
overwrite = FALSE
)
Arguments
- mraster
spatRaster. ALS metrics raster. Requires at least 2 layers to calculate covariance matrix.
- existing
sf 'POINT'. Existing plot network.
- cores
Numeric. Number of cores to use for parallel processing.
default = 1
.- threshold
Numeric. Proxy maximum pixel quantile to avoid outliers.
default = 0.95
.- plot
Logical. Plots output strata raster and visualized strata with boundary dividers.
- filename
Character. Path to write stratified raster to disc.
- overwrite
Logical. Specify whether
filename
should be overwritten on disc.
References
Malone BP, Minasny B, Brungard C. 2019. Some methods to improve the utility of conditioned Latin hypercube sampling. PeerJ 7:e6451 DOI 10.7717/peerj.6451
See also
Other calculate functions:
calculate_allocation()
,
calculate_allocation_existing()
,
calculate_distance()
,
calculate_pcomp()
,
calculate_pop()
,
calculate_representation()
,
calculate_sampsize()
Examples
if (FALSE) {
#--- Load raster and existing plots---#
r <- system.file("extdata", "mraster.tif", package = "sgsR")
mr <- terra::rast(r)
e <- system.file("extdata", "existing.shp", package = "sgsR")
e <- sf::st_read(e)
calculate_coobs(
mraster = mr,
existing = e,
cores = 4
)
}