Population level analysis of metric raster data to determine optimal Latin Hypercube sample size
Usage
calculate_lhsOpt(
mats,
PCA = TRUE,
quant = TRUE,
KLdiv = TRUE,
minSamp = 10,
maxSamp = 100,
step = 10,
rep = 10,
iter = 10000
)
Arguments
- mats
List. Output from
calculate_pop
function.- PCA
Logical. Calculates principal component loadings of the population for PCA similarity factor testing.
default = FALSE
.- quant
Logical. Perform quantile comparison testing.
- KLdiv
Logical. Perform Kullback–Leibler divergence testing.
- minSamp
Numeric. Minimum sample size to test.
default = 10
.- maxSamp
Numeric. Maximum sample size to test.
default = 100
.- step
Numeric. Sample step size for each iteration.
default = 10
.- rep
Numeric. Internal repetitions for each sample size.
default = 10
.- iter
Positive Numeric. The number of iterations for the Metropolis-Hastings annealing process. Defaults to
10000
. Internal toclhs
.
References
Malone BP, Minasny B, Brungard C. 2019. Some methods to improve the utility of conditioned Latin hypercube sampling. PeerJ 7:e6451 DOI 10.7717/peerj.6451
Examples
if (FALSE) {
#--- Load raster and access files ---#
r <- system.file("extdata", "mraster.tif", package = "sgsR")
mr <- terra::rast(r)
#--- calculate lhsPop details ---#
mats <- calculate_pop(mraster = mr)
calculate_lhsOpt(mats = mats)
calculate_lhsOpt(
mats = mats,
PCA = FALSE,
iter = 200
)
}