Sub-sample an existing sample. Four sampling methods are available:
clhs
, balanced
, srs
and strat
.
Usage
sample_existing(
existing,
nSamp,
raster = NULL,
type = "clhs",
access = NULL,
buff_inner = NULL,
buff_outer = NULL,
details = FALSE,
filename = NULL,
overwrite = FALSE,
...
)
Arguments
- existing
sf 'POINT'. Existing plot network.
- nSamp
Numeric. Number of desired samples.
- raster
SpatRaster. Raster to guide the location of the samples. If
type = "clhs"
this raster can also be used to define the population distributions to be used for sampling.- type
Character. A string indicating the type of sampling method to use. Possible values are
"clhs"
,"balanced"
,"srs"
and"strat"
.- access
sf. Road access network - must be lines.
- buff_inner
Numeric. Inner buffer boundary specifying distance from access where plots cannot be sampled.
- buff_outer
Numeric. Outer buffer boundary specifying distance from access where plots can be sampled.
- details
Logical. If
FALSE
(default) output is sf object of systematic samples. IfTRUE
returns a list of sf objects wheretessellation
is the tessellation grid for sampling, andsamples
are the systematic samples.- filename
Character. Path to write output samples.
- overwrite
Logical. Choice to overwrite existing
filename
if it exists.- ...
Additional arguments for the sampling method selected.
Note
When type = "clhs"
or type = "balanced"
all attributes in existing
will be used for sampling.
Remove attributes not indented for sampling' prior to using this algorithm.
See also
Other sample functions:
sample_ahels()
,
sample_balanced()
,
sample_clhs()
,
sample_nc()
,
sample_srs()
,
sample_strat()
,
sample_sys_strat()
,
sample_systematic()
Examples
r <- system.file("extdata", "mraster.tif", package = "sgsR")
mr <- terra::rast(r)
#--- generate an existing sample adn extract metrics ---#
e <- sample_systematic(raster = mr, cellsize = 200)
e <- extract_metrics(existing = e, mraster = mr)
#--- perform clhs (default) sub-sampling ---#
sample_existing(
existing = e,
nSamp = 50
)
#> Sub-sampling based on ALL 'existing' metric distributions. Ensure only attributes of interest are included.
#> Simple feature collection with 50 features and 3 fields
#> Geometry type: POINT
#> Dimension: XY
#> Bounding box: xmin: 431113.4 ymin: 5337781 xmax: 438145 ymax: 5343015
#> Projected CRS: UTM Zone 17, Northern Hemisphere
#> First 10 features:
#> zq90 pzabove2 zsd geometry
#> 703 19.30 71.4 3.97 POINT (436096.5 5341519)
#> 595 11.70 54.5 3.21 POINT (437798.3 5338469)
#> 847 15.20 76.4 4.49 POINT (436860.6 5342758)
#> 253 21.00 77.5 5.71 POINT (431871 5341994)
#> 824 25.80 95.0 6.66 POINT (437374.4 5341602)
#> 737 23.60 86.3 6.18 POINT (437592.8 5340177)
#> 518 5.03 27.0 2.37 POINT (434266.3 5341744)
#> 880 16.90 94.4 3.08 POINT (437438.5 5343015)
#> 766 15.60 93.7 3.87 POINT (438145 5339869)
#> 374 18.50 45.8 5.26 POINT (435415.9 5339002)
#--- perform balanced sub-sampling ---#
sample_existing(
existing = e,
nSamp = 50,
type = "balanced"
)
#> Simple feature collection with 50 features and 3 fields
#> Geometry type: POINT
#> Dimension: XY
#> Bounding box: xmin: 431537.1 ymin: 5337865 xmax: 438549.6 ymax: 5343137
#> Projected CRS: UTM Zone 17, Northern Hemisphere
#> First 10 features:
#> zq90 pzabove2 zsd geometry
#> 8 17.20 96.8 3.54 POINT (431543.7 5337903)
#> 32 13.30 94.7 2.90 POINT (432391.3 5337865)
#> 38 17.00 91.9 4.54 POINT (432404.2 5338147)
#> 58 14.70 97.5 2.83 POINT (432564.7 5338565)
#> 61 13.40 87.4 3.35 POINT (432969.3 5338122)
#> 75 12.60 62.4 3.55 POINT (433117 5338257)
#> 121 6.97 76.4 1.72 POINT (431537.1 5340876)
#> 182 14.80 91.4 3.74 POINT (433585.7 5339226)
#> 198 18.60 84.7 5.12 POINT (432249.9 5340986)
#> 228 19.50 92.0 4.26 POINT (432667.3 5340825)
#--- perform simple random sub-sampling ---#
sample_existing(
existing = e,
nSamp = 50,
type = "srs"
)
#> Simple feature collection with 50 features and 3 fields
#> Geometry type: POINT
#> Dimension: XY
#> Bounding box: xmin: 431126.3 ymin: 5337769 xmax: 438517.4 ymax: 5343002
#> Projected CRS: UTM Zone 17, Northern Hemisphere
#> First 10 features:
#> zq90 pzabove2 zsd geometry
#> 1 20.50 74.8 6.28 POINT (435813.9 5341532)
#> 2 17.60 78.0 5.20 POINT (432860.1 5338834)
#> 3 17.20 88.1 4.41 POINT (431845.4 5341429)
#> 4 18.80 90.9 5.01 POINT (433624.2 5340074)
#> 5 10.50 25.7 2.81 POINT (432609.5 5342668)
#> 6 20.60 93.8 5.99 POINT (434054.4 5340196)
#> 7 8.51 84.9 1.84 POINT (437926.6 5341294)
#> 8 16.60 87.9 3.98 POINT (433682.1 5338231)
#> 9 14.80 91.4 3.82 POINT (437625 5337769)
#> 10 15.80 76.4 3.92 POINT (431819.7 5340864)